16. НАУКА КАК ОСОБАЯ ФОРМА МИРОВОЗЗРЕНИЯ

НАУКА – особый вид познавательной деятельности, нацеленный на выработку объектив-ных, системно организованных и обоснованных знаний о мире. Социальный институт, обеспечи-вающий функционирование научной познавательной деятельности.
Как вид познания наука взаимодействует с др. его видами: обыденным, художественным, религиозно-мифологическим, философским. Возникает из потребностей практики и особым спо-собом регулирует ее. Наука ставит своей целью выявить сущностные связи (законы), в соответст-вии с которыми объекты могут преобразовываться в человеческой деятельности. Поскольку в дея-тельности могут преобразовываться любые объекты – фрагменты природы, социальные подсисте-мы и общество в целом, состояния человеческого сознания и т.п., постольку все они могут стать предметами научного исследования. Наука изучает их как объекты, функционирующие и разви-вающиеся по своим естественным законам. Она может изучать и человека как субъекта деятельно-сти, но тоже в качестве особого объекта.
Предметный и объективный способ рассмотрения мира, характерный для науки, отличает ее от иных способов познания. Напр., в искусстве освоение действительности всегда происходит как своеобразная склейка субъективного и объективного, когда любое воспроизведение событий или состояний природы и социальной жизни предполагает их эмоциональную оценку. Художест-венный образ всегда выступает как единство общего и единичного, рационального и эмоциональ-ного. Научные же понятия – это рациональное, выделяющее общее и существенное в мире объек-тов.
Отражая мир в его объективности, наука дает лишь один из срезов многообразия человече-ского мира. Поэтому она не исчерпывает собой всей культуры, а составляет лишь одну из сфер, ко-торая взаимодействует с др. сферами культурного творчества – моралью, религией, философией, искусством и т.д. Признак предметности и объективности знания является важнейшей характери-стикой науки, но он еще недостаточен для определения ее специфики, поскольку отдельные объ-ективные и предметные знания может давать и обыденное познание. Но в отличие от него наука не ограничивается изучением только тех объектов, их свойств и отношений, которые в принципе могут быть освоены в практике соответствующей исторической эпохи. Она способна выходить за рамки каждого исторически определенного типа практики и открывать для человечества новые предметные миры, которые могут стать объектами массового практического освоения лишь на бу-дущих этапах развития цивилизации. Лейбниц характеризовал математику как науку о возможных мирах. В принципе эту характеристику можно отнести к любой фундаментальной науке. Элек-тромагнитные волны, ядерные реакции, когерентные излучения атомов были вначале открыты в науке, и в этих открытиях потенциально был заложен принципиально новый уровень технологи-ческого развития цивилизации, который реализовался значительно позднее (техника электродви-гателей и электрогенераторов, радио- и телеаппаратура, лазеры и атомные электростанции и т.д.).
Постоянное стремление науки к расширению поля изучаемых объектов, безотносительно к сегодняшним возможностям их массового практического освоения, выступает тем системообра-зующим признаком, который обосновывает др. характеристики науки, отличающие ее от обыден-ного познания. Прежде всего – это отличие по их продуктам (результатам). Обыденное познание создает конгломерат знаний, сведений, предписаний и верований, лишь отдельные фрагменты которого связаны между собой. Истинность знаний проверяется здесь непосредственно в наличной практике, т.к. знания строятся относительно объектов, которые включены в процессы производства и наличного социального опыта. Но поскольку наука постоянно выходит за эти рамки, она лишь частично может опереться на наличные формы массового практического освоения объектов. Ей нужна особая практика, с помощью которой проверяется истинность ее знаний. Такой практикой становится научный эксперимент. Часть знаний непосредственно проверяется в эксперименте. Остальные связываются между собой логическими связями, что обеспечивает перенос истинности с одного высказывания на другое. В итоге возникают присущие науке характеристики ее знаний – их системная организация, обоснованность и доказанность.
Наука, в отличие от обыденного познания, предполагает применение особых средств и ме-тодов деятельности. Она не может ограничиться использованием только обыденного языка и тех орудий, которые применяются в производстве и повседневной практике. Кроме них, ей необходи-мы особые средства деятельности – специальный язык (эмпирический и теоретический) и особые приборные комплексы. Именно постоянное развитие этих средств обеспечивают исследование все новых объектов, в  т.ч. и тех, которые выходят за рамки возможностей наличной производственной и социальной практики. С этим же связаны потребности науки в постоянной разработке спе-циальных методов, обеспечивающих освоение новых объектов безотносительно к возможностям их сегодняшнего практического освоения. Такие объекты, как правило, не даны заранее, не фик-сируются методами повседневной практики и производственной деятельности, поскольку выходят за их границы. Метод в науке часто служит условием фиксации объекта исследования. Напр., ко-роткоживущие частицы – резонансы были зафиксированы в физике только благодаря методу оп-ределения их основных признаков. Резонансы за время их жизни пробегают расстояние, сравни-мое с размерами атома, и поэтому не оставляют треков в фотоэмульсиях; но они распадаются на частицы, оставляющие треки, и по характеру этих треков, применяя законы сохранения, вычисля-ют соответствующий резонанс. После появления этого метода было обнаружено, что следы распада резонансов наблюдались и в некоторых предыдущих экспериментах с элементарными частицами, эти следы наблюдали, но никто их не интерпретировал как существование нового класса частиц. Наряду со знанием об объектах наука систематически развивает знания о методах.
Наконец, существуют специфические особенности субъекта научной деятельности. Субъект обыденного познания формируется в самом процессе социализации. Для науки же этого недоста-точно. Здесь требуется особое обучение познающего субъекта, которое обеспечивает его умение применять свойственные науке средства и методы при решении ее задач и проблем. Кроме того, систематические занятия наукой предполагают усвоение субъектом особой, свойственной ей сис-темы ценностей. Их фундаментом выступают ценностные установки на поиск истины и на посто-янное наращивание истинного знания. Эти установки соответствуют двум фундаментальным и определяющим признакам науки: предметности и объективности научного познания и ее интенции на изучение все новых объектов, безотносительно к наличным возможностям их массового практического освоения. На базе этих установок исторически развивается система идеалов и норм научного исследования. Эти же ценностные ориентации составляют основание этики науки. Два главных принципа характеризуют научный этос. Первый из них запрещает умышленное искаже-ние истины в угоду тем или иным социальным целям, второй требует постоянной инновационной деятельности, роста истинного знания и вводит запреты на плагиат. Ученый может ошибаться, но не имеет права подтасовывать результаты, он может повторить уже сделанное открытие, но не имеет права заниматься плагиатом. Институт ссылок как обязательное условие оформления науч-ной монографии и статьи призван не только зафиксировать авторство тех или иных идей и научных текстов. Он обеспечивает четкую селекцию уже известного в науке и новых результатов. Вне этой селекции не было бы стимула к напряженным поискам нового, в науке возникли бы бесконечные повторы пройденного и, в конечном счете, было бы подорвано ее главное качество – постоянно генерировать рост нового знания, выходя за рамки привычных и уже известных представлений о мире. Требование недопустимости фальсификаций и плагиата выступает как своеобразная презумпция науки. В реальной жизни она может нарушаться, и в различных научных сообществах существуют санкции за нарушение этических принципов науки (хотя их жесткость бывает различ-ной).
В развитии научного знания можно выделить стадию преднауки и науки в собственном смысле слова. Преднаука еще не выходит за рамки наличной практики. Она моделирует измене-ние объектов, включенных в практическую деятельность, предсказывая их возможные состояния. Реальные объекты замещаются в познании идеальными объектами и выступают как абстракции, которыми оперирует мышление. Их связи и отношения, операции с ними также черпаются из практики, выступая как схема практических действий. Такой характер имели, напр., геометриче-ские знания древних египтян. Первые геометрические фигуры были моделями земельных участ-ков. Операции разметки участка с помощью туго натянутой мерной веревки и этой же веревки, но закрепленной на конце с помощью колышка, чтобы проводить окружности и дуги, затем были схематизированы и стали способом построения геометрических фигур с помощью циркуля и ли-нейки. Аналогично в древнеегипетских таблицах сложения чисел прослеживается схема реальных практических действий по объединению предметов в совокупности. Реальный предмет замещался идеальным объектом «единица» и обозначался знаком ∣; десять черточек замещалось знаком ⋂ (число десять), для сотен и тысяч вводились особые знаки. Сложение, напр., двадцати одного (⋂⋂∣) и одиннадцати (⋂∣) осуществлялось как добавление к знакам, обозначающим первое число, знаков, обозначающих второе число, получалось новое число ⋂⋂⋂| | (тридцать два).
Переход от преднауки к собственно науке был связан с новым способом формирования идеальных объектов и их связей, моделирующих практику. В развитой науке они черпаются не только непосредственно из практики, но преимущественно создаются в качестве абстракций, на основе ранее созданных идеальных объектов. Построенные из их связей модели выступают в каче-стве гипотез, которые затем, получив обоснование, превращаются в теоретические схемы изучае-мой предметной области. Так возникает особое движение в сфере развивающегося теоретического знания, которое начинает строить модели изучаемой реальности как бы сверху по отношению к практике с их последующей прямой или косвенной практической проверкой.
Благодаря новому методу построения знаний наука получает возможность изучить не только те предметные связи, которые могут встретиться в сложившихся стереотипах практики, но и исследовать изменения объектов, которые в принципе могла бы освоить развивающаяся циви-лизация. С этого момента кончается этап преднауки и начинается наука в собственном смысле. В ней наряду с эмпирическими правилами и зависимостями (которые знала и преднаука) формиру-ется особый тип знания – теория, позволяющая получить эмпирические зависимости как следствие из теоретических постулатов. Меняется и категориальный статус знаний – они могут соотноситься уже не только с осуществленным опытом, но и с качественно иной практикой будущего, а поэтому строятся в категориях возможного и необходимого. Знания уже не формулируются только как предписания для наличной практики, они выступают как знания об объектах реальности «самой по себе», и на их основе вырабатывается рецептура будущего практического изменения объектов.
Можно выделить три основных этапа формирования науки в собственном смысле слова. Переход от преднауки к собственно науке исторически первой осуществила математика. По мере ее эволюции числа и геометрические фигуры начинают рассматриваться не как прообраз предме-тов, которыми оперируют в практике, а как относительно самостоятельные математические объек-ты, свойства которых подлежат систематическому изучению. С этого момента начинается собст-венно математическое исследование, в ходе которого из ранее изученных чисел и геометрических фигур строятся новые идеальные объекты. Применяя, напр., операцию вычитания к любым парам положительных чисел, можно было получить отрицательные числа (при вычитании из меньшего числа большего). Открыв для себя класс отрицательных чисел, математика делает следующий шаг. Она распространяет на них все те операции, которые были приняты для положительных чисел, и таким путем создает новое знание, характеризующее ранее не исследованные структуры действи-тельности. В дальнейшем происходит новое расширение класса чисел: применение операции из-влечения корня к отрицательным числам формирует новую абстракцию – «мнимое число». И на этот класс идеальных объектов опять распространяются все те операции, которые применялись к натуральным числам.
Аналогично, сравнение и преобразование геометрических фигур приводит к выявлению их свойств и отношений, которые превращаются в фундаментальные абстракции геометрии (точка, линия, плоскость, угол и т.п.). Их связи и свойства выражают постулаты, на основе которых была создана первая математическая теория – Евклидова геометрия. Дальнейшее изучение признаков геометрических объектов путем применения к ним различных операций преобразования приводит к построению различных теоретических систем геометрии (неевклидовы геометрии, проективная геометрия, топология и т.п.).
Вслед за математикой способ теоретического познания, основанный на движении мысли в поле теоретических идеальных объектов, утвердился в естествознании. Здесь он известен как метод выдвижения гипотез с их последующим обоснованием опытом. Опытная проверка осуществляется посредством эксперимента, наблюдения и измерения, целенаправляемых теоретическими знаниями. Самостоятельное экспериментальное исследование лишь относительно автономно, оно всегда определено постановкой проблем и задач, возникающих как результат теоретического ос-мысления предшествующих фактов и формирования теоретического видения исследуемой реаль-ности.
Наконец, в качестве третьего этапа развития науки в собственном смысле слова следует выделить формирование технических наук как своеобразного опосредующего слоя знания между естествознанием и производством, а затем становление социальных и гуманитарных наук. В этих областях научного познания также возникает слой особых теоретических идеальных объектов, оперирование которыми позволяет объяснять и предсказывать феномены изучаемой предметной области.
Каждый из этапов развития науки имел свои социокультурные предпосылки. Первые отно-сительно развитые образцы теоретических знаний математики возникли в контексте культуры ан-тичного полиса, с присущими ей ценностями публичной дискуссии, демонстрациями доказатель-ства и обоснования как условиями получения истины. Полис принимал социально значимые ре-шения на основе конкурирующих предложений и мнений на народном собрании. Преимущество одного мнения перед другим выявлялось через доказательство. Идеал обоснованного знания, от-личного от мнения, получил свое рациональное осмысление и развитие в античной философии. В ней особое влияние уделялось методам постижения и развертывания истины (диалектике и логи-ке). Первые шаги к разработке диалектики как метода были связаны с анализом столкновения в споре противоположных мнений (типичная ситуация выработки нормативов деятельности на на-родном собрании). Развитие логики в античной философии также было тесно связано с поисками критериев правильного рассуждения в ораторском искусстве, и вырабатываемые здесь нормативы логического следования были применены к научному рассуждению. Применение идеала обосно-ванного и доказанного знания в области математики утвердило новые принципы изложения и трансляции знаний. Именно в греческой математике доминирует изложение знаний в виде теорем: «дано – требуется доказать – доказательство». Но в древнеегипетской и вавилонской математике такая форма не была принята, здесь обнаруживаются только нормативные рецепты решения задач, излагаемые по схеме: «Делай так!»... «Смотри, ты сделал правильно!». Некоторые знания в математике Древнего Египта и Вавилона, напр., такие, как алгоритм вычисления объема усечен-ной пирамиды, по-видимому, не могли быть получены вне процедур вывода и доказательства (М.Я.Выгодский). Однако в процессе изложения знаний этот вывод не демонстрировался. Произ-водство и трансляция знаний в культуре Древнего Египта и Вавилона закреплялись за кастой жре-цов и чиновников и носили авторитарный характер. Обоснование знания путем демонстрации до-казательства не превратилось в этих культурах в идеал построения знаний, что наложило серьез-ные ограничения на процесс превращения «эмпирической математики» в теоретическую науку.
Античные философы, выработав необходимые средства для перехода к теоретическому пу-ти развития математики, предприняли многочисленные попытки систематизировать математиче-ские знания, добытые в древних цивилизациях, путем применения процедуры доказательства (Фалес, пифагорейцы, Платон). Этот процесс завершился в эпоху эллинизма созданием первого образца развитой научной теории – Евклидовой геометрии (3 в. до н.э.).
Естествознание, основанное на соединении математического описания природы с ее экспе-риментальным исследованием, формировалось в результате культурных сдвигов, осуществивших-ся в эпоху Ренессанса и перехода к Новому времени. Идея эксперимента как метода познания и проверки истинности научных суждений могла утвердиться только при наличии следующих ми-ровоззренческих установок. Во-первых, понимания субъекта познания как противостоящего при-роде и активно изменяющего ее объекты. Во-вторых, рассмотрения результатов эксперимента, ко-торые представляют собой продукт искусственного, человеком сотворенного, как принципиально неотличимого от естественных природных состояний; представления о том, что экспериментальное вмешательство в протекание природных процессов создает феномены, подчиненные законам природы, и выявляет действие этих законов. В-третьих, рассмотрения природы как закономерно упорядоченного поля объектов, где индивидуальная неповторимость каждой вещи как бы раство-ряется в действии законов, которые управляют движением и изменением качественного многооб-разия вещей и одинаково действуют во всех точках пространства и во все моменты времени.
Все эти мировоззренческие установки, предполагающие особые смыслы фундаментальных универсалий культуры (природы, человека, пространства и времени, деятельности, познания), складывались в эпоху становления базисных ценностей техногенной цивилизации, но они не были присущи традиционалистским культурам. Их не было ни в античности, ни в европейском средне-вековье. Напр., в античной культуре природа рассматривалась как целостный живой организм, в котором отдельные части – вещи имеют свои назначения и функции. Поэтому полагалось, что для познания органической целостности космоса необходимо понять индивидуальную качественную специфику каждой вещи и каждой качественно специфической сущности, воплощенной в вещах. Вечное движение космоса рассматривалось как воспроизводство гармонии целого, космос одно-временно мыслился и как подвижный, изменчивый, и как некоторое скульптурное целое, где час-ти, дополняя друг друга, создают завершенную гармонию. С этой точки зрения насильственное препарирование частей мироздания, в несвободных, несвойственных их естественному бытию ус-ловиях, не в состоянии обнаружить гармонию космоса.
В античной культуре знание об искусственном («тэхне») противопоставлялось знанию о ес-тественном («фюсис»). Познание космоса понималось как постижение его гармонии в умозри-тельном созерцании, которое расценивалось как главный способ достижения истины. Поэтому даже когда античная наука в эпоху эллинизма вплотную подошла к соединению математического описания природы с экспериментом (Архимед, Герон, Папп), она не сделала решающего шага к конституированию эксперимента как способа познания природы. Этому препятствовали фунда-ментальные мировоззренческие смыслы, определявшие специфику античной культуры.
Становление мировоззренческих предпосылок, необходимых для утверждения метода экс-перимента в науке, было связано с духовной революцией эпохи Ренессанса и Реформации: с новым (по сравнению со средневековьем) пониманием человека не просто как божьей твари, но как твор-ца, продолжающего в своих делах акты божественного творения; с отношением к любой деятель-ности, а не только к интеллектуальному труду как к ценности и источнику общественного богатства; с возникновением понимания природы как поля приложения человеческих сил; с формированием представлений об искусственном как особом выражении естественного и т.д.
Третья важная веха развития науки – становление технических , а затем социальных и гу-манитарных наук была связана с эпохой индустриализма, с усиливающимся внедрением научных знаний в производство и возникновением потребностей научного управления социальными про-цессами. В этот исторический период интенсивное развитие промышленного производства поро-ждает потребности в изобретении и тиражировании все новых инженерных устройств, что создает стимулы и предпосылки становления технических наук. Вместе с тем индустриальное развитие приводит к относительно быстрым трансформациям социальных структур, разрушению традици-онных общинных связей, вытесняемых отношениями «вещной зависимости» (К.Маркс). Создаются новые типы социальных общностей, становящиеся объектами социального управления. Возникают условия и потребности в выяснении способов рациональной регуляции стандартизируемых функций и действий индивидов, включаемых в те или иные социальные группы. В контексте этих социальных потребностей и возникают первые программы построения наук об обществе (К.А.Сен-Симон, О.Конт, К.Маркс).Вначале мыслилось построить социальные науки как простое продолже-ние естественных наук (программа Сен-Симона и Конта, трактовавшая социологию как «социаль-ную физику» и ориентированная на поиск законов общества, аналогичных закону всемирного тя-готения). Затем была выявлена специфика социальных объектов как исторически развивающихся (органических) систем (первые шаги в этом направлении были сделаны уже Контом, затем Спен-сером; существенным вкладом стала разработка Марксом применительно к социальному познанию методологии исследования сложных, исторически развивающихся систем). Формирование гуманитарных наук, основными объектами которых становятся состояния культуры, духовные фе-номены, запечатленные в текстах, сопровождалось выявлением ряда специфических процедур их исследования (отнесение к ценностям, понимание, идеографический метод, нарративные описания и т.д.). Выявление этих особенностей породило противопоставление «наук о природе» и «наук о духе» (Риккерт, Виндельбанд, Дильтей, Вебер), которое имело определенные основания в науке 19 и нач. 20 в. (но в современной науке демаркация между естественными и гуманитарными науками уже не носит жесткого характера).
На каждом из этапов развития научное познание усложняло свою организацию. Во всех развитых науках складываются уровни теоретического и эмпирического исследования со специ-фическими для них методами и формами знания (основными формами теоретического уровня знаний выступает научная теория и научная картина мира; эмпирического уровня – данные на-блюдения и научный факт). Формируется дисциплинарная организация науки, возникает система дисциплин со сложными связями между ними. Каждая из наук (математика, физика, химия, био-логия, технические и социальные науки) имеет свою внутреннюю дифференциацию и свои осно-вания – свойственную ей картину исследуемой реальности, специфику идеалов и норм исследова-ния и характерные для нее философско-мировоззренческие основания. Взаимодействие наук формирует междисциплинарные исследования, удельный вес которых возрастает по мере разви-тия науки. Развитие науки как познавательной деятельности сопровождалось появлением соответ-ствующих форм ее институализации, связанной с организацией исследований и способом воспро-изводства субъекта научной деятельности. Как особый социальный институт наука начала оформ-ляться в 17–18 вв., когда в Европе возникли первые научные общества и академии. В этот период складываются новые типы коммуникации ученых. Сообщество естествоиспытателей в 17 в. консти-туируется не только благодаря академиям и научным обществам, но и в рамках т.н. «Республики ученых», основанной на частной переписке на латыни между исследователями. Переписка, в кото-рой излагались результаты экспериментов, их интерпретация и объясняющие гипотезы, становит-ся средством совместного обсуждения промежуточных результатов исследования. Наряду с книгой – фолиантом, в котором излагается система взглядов на природу, письма ученых друг другу стано-вятся средством закрепления и передачи научного знания. В кон. 18 – 1-й пол. 19 в. углубление специализации научной деятельности приводит к возішкновению дисциплинарных объединений исследователей. Возникают научные журналы, напр. журнал «Химические анналы», вокруг кото-рого консолидируется единое сообщество немецких химиков. Научная статья (наряду с моногра-фией) становится основным продуктом научной деятельности. Латынь уступает место националь-ным языкам. «Республика ученых» заменяется множеством дисциплинарно ориентированных со-обществ. Наряду с академическими учреждениями, возникшими в 17 – нач. 18 в. (Лондонское Ко-ролевское общество – 1660; Парижская академия наук – 1666; Берлинская академия наук – 1700; Петербургская академия наук – 1724), формируются новые ассоциации ученых: «Французская кон-серватория (хранилище технических искусств и ремесел» (1790), «Собрание немецких естествоис-пытателей» (1822), «Британская ассоциация содействия прогрессу» (1831) и др. Меняется система образования. В университетах возникает новая сеть учебных предметов, включающих кроме тра-диционно гуманитарных также естественнонаучные и технические дисциплины. Открываются но-вые центры подготовки специалистов, как, напр., Политехническая школа в Париже (1795). В 19 в. образование начинает строиться на основе специализации по отдельным областям научного зна-ния, что соответствует конституированию дисциплинарной организации науки. Целенаправленная специализированная подготовка научных кадров как способ воспроизводства субъекта научной деятельности оформляет особую профессию научного работника. В 20 в. наука превратилась в особый тип производства научных знаний, включающий многообразные типы объединения уче-ных, в  т.ч. и крупные исследовательские коллективы, целенаправленное финансирование и осо-бую экспертизу исследовательских программ, их социальную поддержку, особую промышленно-техническую базу, обслуживающую научный поиск, сложное разделение труда и целенаправлен-ную подготовку кадров. Дисциплинарно ориентированные исследования дополняются междисци-плинарными и проблемно ориентированными. Стационарные объединения ученых (НИИ, акаде-мии, научные центры в университетах) сочетаются с неформальными объединениями типа «не-зримого колледжа». В кон. 20 в. возникновение компьютерных сетей и мировой сети Интернет порождает новые типы научных коммуникаций (компьютерная статья, монография, компьютерный журнал, дискуссия с использованием компьютерной сети и т.д.). В рамках Интернета возникают некоторые аналоги «Республики ученых» (обсуждение промежуточных результатов, идей, гипотез путем компьютерной дискуссии, применение английского языка примерно в той же функции, как применялась латынь учеными 17 в.).
В процессе исторического развития науки менялись ее функции в социальной жизни. В эпоху становления естествознания наука отстаивала в борьбе с религией право участвовать в фор-мировании мировоззрения. Этот процесс привел к становлению научной картины мира, которая в конечном итоге предстала как самостоятельная форма знания, не подчиненная религиозным представлениям о мире, а сложным образом с ними взаимодействующая. Научная картина мира и связанные с нею конкретные знания различных дисциплин постепенно превратились в основу системы массового образования. Тем самым наука стала реальным фактором формирования ми-ровоззрения людей. В 19 в. к мировоззренческой функции добавилась функция производительной силы. Широкое применение достижений науки в производстве породило феномен научно-технических революций. В 1-й пол. 20 в. наука стала приобретать еще одну функцию, она стала превращаться в социальную силу, внедряясь в самые различные сферы социальной жизни и регу-лируя различные віщы человеческой деятельности.
В современную эпоху, в связи с глобальными кризисами возникает проблема поиска новых мировоззренческих ориентаций человечества. В этой связи переосмысливаются и функции науки. Доминирующее положение науки в системе ценностей культуры во многом было связано с ее тех-нологической проекцией. Сегодня важно органическое соединение ценностей научно-технологического мышления с теми социальными ценностями, которые представлены нравствен-ностью, искусством, религиозным и философским постижением мира. Такое соединение пред-ставляет собой новый тип научной рациональности.
В развитии науки (начиная с 17 в.) можно выделить три основных типа научной рацио-нальности: классическую (17 – нач. 20 в.), неклассическую (1-я пол. 20 в.), постнеклассическую (кон. 20 в.). Классическая наука предполагала, что субъект дистанцирован от объекта, как бы со стороны познает мир, а условием объективно-истинного знания считала элиминацию из объясне-ния и описания всего, что относится к субъекту и средствам деятельности. Для неклассической ра-циональности характерна идея относительности объекта к средствам и операциям деятельности; экспликация этих средств и операций выступает условием получения истинного знания об объекте. Образцом реализации этого подхода явилась квантово-релятивистская физика. Наконец, пост-неклассическая рациональность учитывает соотнесенность знаний об объекте не только со средст-вами, но и ценностно-целевыми структурами деятельности, предполагая экспликацию внутрина-учных ценностей и их соотнесение с социальными целями и ценностями.
Появление каждого нового типа рациональности не устраняет предыдущего, но ограничи-вает пространство его действия.
Каждый из них расширяет поле исследуемых объектов (от доминирования в 17–18 вв. ис-следований простых, механических систем до включения в качестве главных объектов изучения сложных, саморегулирующихся, а затем и исторически развивающихся систем).
В современной, постнеклассической, науке все большее место занимает особый тип исто-рически развивающихся систем – т.н. человекоразмерные системы, включающие человека и его деятельность в качестве составного компонента. К ним относятся объекты современных биотехно-логий, в первую очередь генной инженерии, медико-биологические объекты, крупные экосистемы и биосфера в целом, человеко-машинные системы и сложные информационные комплексы (включая системы искусственного интеллекта), социальные объекты и т.д.
При изучении «человекоразмерных» объектов поиск истины оказывается связанным с оп-ределением стратегии и возможных направлений преобразования объекта. С системами такого типа нельзя свободно экспериментировать. В процессе их исследования и практического освоения особую роль начинает играть знание запретов на некоторые стратегии взаимодействия, потенци-ально содержащие в себе катастрофические последствия для человека. В этой связи трансформи-руется идеал ценностно-нейтрального исследования. Объективно истинное объяснение и описание применительно к «человекоразмерным» объектам не только допускает, но и предполагает вклю-чение аксиологических факторов в состав объясняющих положений. Возникает необходимость экспликации связей фундаментальных внутринаучных ценностей (поиск истины, рост знаний) с вненаучными ценностями общесоциального характера. В современных программно-ориентированных исследованиях эта экспликация осуществляется при социальной экспертизе программ. Вместе с тем в ходе самой исследовательской деятельности с человекоразмерными объ-ектами исследователю приходится решать ряд проблем этического характера, определяя границы возможного вмешательства в объект. Внутренняя этика науки, стимулирующая поиск истины и ориентацию на приращение нового знания, постоянно соотносится в этих условиях с общегумани-стическими принципами и ценностями. Методология исследования исторически развивающихся человекоразмерных систем сближает естественнонаучное и гуманитарное познание, составляя ос-нову для их глубокой интеграции.